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The probabilistic theory of the three-phase structure invariants for isomorphous

pairs has been generalized to the case in which a heavy-atom structure model is

available. The rigorous method of joint probability distributions has been

applied: it is able to handle errors in measurements and in the heavy-atom

structure model, as well as the lack of isomorphism. The conclusive formulas

have been successfully applied to experimental data.

1. Notation

Fp � jFpj exp�i�p�: structure factor of the protein

Fd � jFdj exp�i�d�: structure factor of the isomorphous

derivative

FH � Fd ÿ Fp: structure factor of the heavy-atom structure

(i.e. the atoms added to the native protein)

�p � �p1 � �p2 � �p3: p1; p2; p3 stand for ph1; ph2; ph3 with

h1 � h2 � h3 � 0

Ep � Ap � iBp � Rp exp�i�p�: normalized structure factor of

the protein

Ed � Ad � iBd � Rd exp�i�d�: pseudo-normalized structure

factor of the derivative (normalized with respect to the native

protein structure)

EH: pseudo-normalized structure factor of the heavy-atom

structure (normalized with respect to the native protein

structure)

�i �
PN

j�1 zi
j, zj = atomic number of the jth atom

Neq � �3
2=�

2
3 : (statistically equivalent) number of atoms in the

primitive unit cell. �Neq�p, �Neq�d, �Neq�H refer to the protein,

derivative and heavy-atom structure, respectively

��3
2=�

2
3 �p: value of Neq for the native protein

��3
2=�

2
3 �H : value of Neq for the heavy-atom structure

��3
2=�

2
3 �d: value of Neq for the derivative

fj: atomic scattering factorP
p �

P
p f 2

j : the sum is extended to the native protein atomsP
H �

P
H f 2

j : the sum is extended to the heavy atomsP
d �

P
d f 2

j : the sum is extended to the atoms in the

derivative unit cell

�iso � jFdj ÿ jFpj

2. Introduction

The probability theory of the three-phase structure invariants

for isomorphous pairs was initiated by Hauptman (1982;

Hauptman et al., 1982) who derived the joint probability

distribution

P��p1; �p2; �p3; �d1; �d2; �d3;Rp1;Rp2;Rp3;Rd1;Rd2;Rd3�: �1�

The Hauptman approach was revisited by Giacovazzo et al.

(1988), who derived an ef®cient and simple formula for esti-

mating the triplet phase �p. Their conclusive expression may

be written as

P��pjRpi;Rdi; i � 1; 2; 3� � �2�Io�A��ÿ1 exp�A cos �p�; �2�

where

A � 2�Neq�ÿ1=2
p Rp1Rp2Rp3 � 2�Neq�ÿ1=2

H �1�2�3 �3a�
� � R0d ÿ R0p;

R0p � jFpj
�P1=2

H ; R0d � jFdj
�P1=2

H :

R0p � jE0pj and R0d � jE0dj are the structure-factor moduli of the

protein and of the derivative, respectively, normalized with

respect to the heavy-atom structure. The formulas (2) and (3a)

were implemented into a direct-methods procedure aimed at

phasing protein structure factors without any information on

the heavy-atom positions (Giacovazzo, Cascarano, Siliqi &

Ralph, 1994; Giacovazzo, Siliqi & Spagna, 1994; Giacovazzo,

Siliqi & Zanotti, 1995; Giacovazzo & Gonzales-Platas, 1995;

Giacovazzo, Siliqi & Gonzales-Platas, 1995; Giacovazzo et al.,

1996).
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When applied to real diffraction data, the procedure proved

able to phase all the re¯ections up to derivative resolution and

to provide, in favourable cases and in a completely automatic

way, electron-density maps that may be directly interpreted.

Severe lack of isomorphism between the native and the

derivative may hinder the success: in this case, the electron-

density maps are not straightforwardly interpretable but can

still show a good correlation with the correct map.

One of the weak points of the Hauptman and Giacovazzo

approaches is that they are unable to deal with errors in

measurements and with the lack of isomorphism. A step in this

direction has been made by Giacovazzo et al. (2001): their

approach leads again to the von Mises distribution (2), but

A � 2�Neq�ÿ1=2
p Rp1Rp2Rp3 � 2�Neq�ÿ1=2

H

Q3
i�1

f�i=�1� ��2
i �H �g;
�3b�

where ��2
i �H is the average square error normalized with

respect to the heavy-atom substructure.

Fortier et al. (1985) and Klop et al. (1987) suggested a way

for improving the electron-density maps obtainable via (1)

and (2). Once the �p are approximately known, the heavy-

atom structure is easily derivable via a difference Fourier

synthesis with coef®cients �jFdj ÿ jFpj� exp�i�p�. The above

authors proposed to incorporate the heavy-atom structure

information into the triplet phase distribution via the doublet

invariant ��di ÿ �pi�, i � 1; 2; 3. However, any application to

real cases failed owing to the fact that distributions (1) and (2)

were obtained in the absence of any information on FH.

Incorporating such information into (1) and (2) a posteriori

[that is, after the mathematical form of (1) and (2) has been

®xed on assuming FH unknown] is an unreliable way for

improving their ef®ciency. Extensive tests made by Furey et al.

(1990) suggest that the procedure is not able to eliminate the

bias towards `unresolved SIR values'. Further contributions

by Fan & Gu (1985), Fan et al. (1990) and Liu et al. (1999) show

that the bias may be overcome in favourable cases by a

supplementary direct procedure combining Sim and Cochran

distributions.

The most effective tool for checking the reliability of the

triplet estimates when the heavy-atom structure is known

should be the study of the joint probability density function

P�Ep1;Ep2;Ep3;Ed1;Ed2;Ed3jEH1;EH2;EH3� �4�

[from now denoted as P�Ep;EdjEH� for shortness]. Unfortu-

nately, Ep, Ed and EH are algebrically related by

Edi � Epi � EHi �5�

and therefore the distribution (4) would coincide with an

unuseful Dirac-�-function-like shape [assuming zero values

when (5) is not veri®ed and unity when it is ful®lled].

The problem may be solved according to Giacovazzo &

Siliqi (2001a,b): the experimental as well as the model errors

are involved in the distributions like supplementary variables.

Then (5) may be replaced by

Edi � Epi � EHi � �i;

where � may represent any form of error; accordingly, distri-

butions shaped as Dirac � functions would no longer occur.

This paper is devoted to the study of the distribution (4)

[that is P�Ep;EdjEH�] under the assumption that errors of

different nature affect the experimental Rp and Rd amplitudes

as well as the EH values calculated from the heavy-atom

structure model. We will also assume that:

(a) The atomic positions are the primitive random variables

of our probabilistic approach.

(b)

Fdi � Fpi � FHi � �i for i � 1; 2; 3; �6�
where �j � j�jj exp�i�j� is the cumulative error arising from

errors in measurements, lack of isomorphism, errors in the

heavy-atom structure etc. The notation throws the cumulative

error on the derivative structure factor in accordance with

Blow & Crick's (1959) treatment. In terms of E's, (6) becomes

Edi � Epi � EHi � �i for i � 1; 2; 3; �7�
so that

hjEdij2i � 1� jEHij2 � j�ij2 � jEHij2 � ei;

where

ei � 1� j�ij2 j�ij2 � j�ij2
�P

p:

(c) h�ii � 0 for i � 1; 2; 3.

(d) h�i�ji � 0 for any pair i and j with �i 6� j�. This implies

that errors are uncorrelated.

(e) Heavy-atom positions and native-protein-atom positions

are uncorrelated, i.e. hEpEHi � 0.

The above assumptions are often not completely ful®lled in

practical cases (i.e. errors could be correlated) but are ideal for

a ®rst study of the problem.

3. The joint probability distribution P�Ep;EdjEH�P�Ep;EdjEH� in P�1P�1

Let us denote by

C�up1; up2; up3; ud1; ud2; ud3�
� hexp�i�up1Ep1 � up2Ep2 � . . .� ud3Ed3��i

(in short C) the characteristic function of the distribution

P�Ep;EdjEH� in P�1, where upi; udi; i � 1; 2; 3, are carrying

variables associated with Epi;Edi; i � 1; 2; 3, respectively. We

have (see Giacovazzo, 1998, ch. 5, for the technique)

C � exp

�
i
P3

j�1

udjEHj ÿ 1
2

�P3

j�1

�u2
pj � eju

2
dj � 2upjudj�

�
ÿ i�up1up2up3 � up1ud2up3 � up1up2ud3 � ud1up2up3

� ud1ud2up3 � ud1up2ud3 � up1ud2ud3 � ud1ud2ud3�=�Neq�1=2
p

�
:

�8�



The joint probability distribution (4) is the Fourier transform

of (8). We will adopt the following procedure: we will ®rst

expand C in a Gram±Charlier series, we will then perform the

Fourier transform of the series, and ®nally we will return back

to the exponential form of the distribution. It has been shown

by Giacovazzo & Siliqi (1996), for quartet as well for triplet

invariants of two isomorphous structures, that such a proce-

dure does not lose any information with respect to the practice

of directly Fourier transforming (8). We have

P�Ep;EdjEH�

� �2��ÿ6
R�1
ÿ1

. . .
R�1
ÿ1

exp

�
ÿ i

�P3

j�1

upjEpj � udj�E2
dj ÿ EHj�

�
ÿ 1

2

P3

j�1

�u2
pj � eju

2
dj � 2upjudj�

�
f1ÿ i�Neq�ÿ1=2

p �up1up2up3

� up1ud2up3 � up1up2ud3 � ud1up2up3 � ud1ud2up3

� ud1up2ud3 � up1ud2ud3 � ud1ud2ud3�g dup1 . . . dud3: �9�

Let us ®rst integrate the component of order zero, and then

the component of order �Neq�ÿ1=2
p . The integral of the ®rst

component may be written as (the bar on a matrix means

`transpose')

�2��ÿ6
R�1
ÿ1

. . .
R�1
ÿ1

exp�ÿiTUÿ 1
2 UKU� dU

� �2��ÿ3�det K�ÿ1=2 exp�ÿ 1
2 TKÿ1T�; �10�

where

U � �up1; up2; up3; ud1; ud2; ud3�;
T � �Ep1;Ep2;Ep3;Ed1 ÿ EH1;Ed2 ÿ EH2;Ed3 ÿ EH3�;

K �

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1 0 0 e1 0 0

0 1 0 0 e2 0

0 0 1 0 0 e3

��������������

��������������
;

det K � �2
1�

2
2�

2
3 :

The coef®cients �ij of Kÿ1 are:

�11 � e1=�
2
1;

�44 � 1=�2
1;

�14 � �41 � ÿ1=�2
1;

�22 � e2=�
2
2;

�55 � 1=�2
2;

�25 � �52 � ÿ1=�2
2;

�33 � e3=�
3
3;

�66 � 1=�2
3;

�36 � �63 � ÿ1=�2
3 :

The other �ij are identically zero.

In an explicit form, (10) may be rewritten as

�2��ÿ3��1�2�3�ÿ1 exp

�
ÿ 1

2

P3

j�1

fE2
pj � �Edj ÿ �Epj � EHj��2=�2

j g
�
:

�11�
The integral of the component of order �Neq�ÿ1=2

p in (9) may be

obtained by repeated application of the relation

R�1
ÿ1
�ix�n exp�ÿ�2x2 ÿ iqx� dx

� 2ÿn�1=2�ÿnÿ1 exp�ÿq2=4�2�Hn�q=2��
for n � 0; 1. Hn is the Hermite polynomial of order n [i.e.

H0�x� � 1;H1�x� � 2x]. The ®nal result is quoted in Appendix

A. Then

P�Ep;Ed; jEH� � �2��ÿ3��1�2�3�ÿ1

� exp

�
ÿ 1

2

P3

j�1

fE2
pj��Edj ÿ �Epj � EHj��2=�2

j g

� �Neq�ÿ1=2
p Ep1Ep2Ep3

�
: �12�

The distribution (12) is the ®rst main result of this paper. A

qualitative analysis of the various terms in (12) suggests the

following observations:

(a) each jEpjj is distributed according to the centric Wilson

statistics [i.e. see the factor exp�ÿE2
pj=2��;

(b) the distribution of each Edj is centred about the value

�Epj � EHj�: the larger �j, the sharper the distribution of Edj

about �Epj � EHj� will be (i.e. see the factor

expfÿ 1
2 �Edj ÿ �Epj � EHj��2=�2

j g);

(c) the Cochran-type term (i.e. expf�Neq�ÿ1=2
p Ep1Ep2Ep3g),

which agrees with the expected positivity of the triplet

invariants of the protein, is the unique contributor of

order �Neq�ÿ1=2
p . No terms of order �Neq�ÿ1=2

H in (12) replace

the contribution �Neq�ÿ1=2
H �1�2�3 in (3a), or

2�Neq�ÿ1=2
H

Q3
i�1 f�i=�1� ��i�2H �g in (3b).

This result is very surprising but logically correct: the

supplementary prior information on the EHs generates very

strong constraints of order zero on their distribution [see point

(b)] which should not be modi®ed by the in¯uence of terms of

order �Neq�ÿ1=2
H . Owing to the quite small value of �Neq�ÿ1=2

p , the

Cochran contribution may be neglected in most cases. It

should to be considered only when �Neq�p is small or when the

�2
i are quite large.

4. The triplet sign probability in P�1P�1

Let sp1; sp2; sp3; sd1; sd2; sd3 be the signs of Ep1;Ep2; . . . ;Ed3,

respectively. The calculation of the probability that

sp1sp2sp3 � 1 requires various steps:

(a) the derivation of the marginal sign probability

P�sp1; sp2; sp3jEH� �
P

sd1;sd2;sd3��1

P�sp1; sp2; sp3; sd1; sd2; sd3�;

(b) the summation of the probability densities P�sp1; sp2; sp3�
over the combinations of the three signs sp1; sp2; sp3 for which

sp1sp2sp3 � 1 to obtain P+;

(c) the summation of the probability densities P�sp1; sp2; sp3�
over the combinations for which sp1sp2sp3 � ÿ1 to obtain Pÿ;

(d) the derivation of the normalized probability that the

triplet sign is positive, i.e.

P�n � �1� Pÿ=P��ÿ1:
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This procedure should lead to a rather complicated formula.

Since

sdi � spi; i � 1; 2; 3;

in most cases, we approximate P�sp1; sp2; sp3� as follows:

P�sp1; sp2; sp3� � Lÿ1 exp

�
�Neq�ÿ1=2

p sp1sp2sp3jEp1Ep2Ep3j

�P3

j�1

spj�isojFHj

�
�2

j

�
; �13�

where L is a suitable normalization constant. We then perform

the steps (b)±(d) of the procedure outlined above.

5. The joint probability distribution P�Ep;EdjEH�P�Ep;EdjEH� in P1P1

As in the centric case, we will assume uncorrelated errors

among the various Fdj; j � 1; 2; 3.

We will study ®rst the characteristic function

C�up1; up2; up3; ud1; ud2; ud3; vp1; vp2; . . . ; vd3�; �14�

where upi; udj; vpj; vdj are carrying variables associated with

Apj;Adj;Bpj;Bdj, respectively, for j � 1; 2; 3. Then the joint

probability distribution [i.e. the Fourier transform of (14)] will

assume the form

P�Ep;Ed; jEH� � �ÿ6��1�2�3�ÿ1
Q3
i�1

�4RpiRdi� exp

�
ÿP3

j�1

R2
pj

ÿP3

j�1

jEdj ÿ �Epj � EHj�j2=�2
j

� 2�Neq�ÿ1=2
p Rp1Rp2Rp3 cos��p1 � �p2 � �p3�

�
:

�15�

Considerations similar to those made in the centric case for

(12) hold for (15) too. In particular: (a) Rp is distributed

according to the acentric Wilson statistics; (b) Edj is distributed

around Epj + Ehj: �j de®nes the sharpness of the distribution;

(c) the Cochran term is the only contribution of order

�Neq�ÿ1=2
p ; (d) no term of order �Neq�ÿ1=2

H survives.

To derive the distribution of the protein phases given all the

magnitudes, we will assume �di � �pi for i � 1; 2; 3.

Then we will write

P��p1; �p2; �p3; jRp;Rd;EH�

� Lÿ1 exp

�P3

j�1

�2�isojjFHjj=j�jj2� cos��pj ÿ �Hj�

� 2�Neq�ÿ1=2
p Rp1Rp2Rp3 cos��p1 � �p2 � �p3�

�
; �16�

where L is a scale factor. Even if (16) has a simple form, the

estimate of the protein triplet phase is not straightforward and

some approximations are needed. Since �Neq�ÿ1=2
p is usually

very small, we introduce the following approach (see

Giacovazzo, 1979):

(a) As a ®rst approximation, the distribution (16) may be

considered as the product of three statistically independent

von Mises distributions

M ��pj;�Hj;Gj� � Lÿ1 exp�Gj cos��pj ÿ �Hj��; j � 1; 2; 3

�17�
with Gj � 2�isojFHjj=j�jj2.

(b) Each M��pj;�Hj;Gj� may be approximated (Stephens,

1963) by the wrapped normal distribution WN�D1�Gj�; �Hj�,
where

WN��; �� �
�

1� 2
P1
p�1

�p2

cos p��ÿ ��
��

2�

with 0 < � � 2�, 0 � � � 1, � � exp�ÿ�2=2� and D1�x� �
I1�x�=I0�x� is the ratio of the modi®ed Bessel functions of

order one and zero, respectively.

(c) The convolution of the three von Mises distributions

(17) (providing the estimate of �p) may be replaced by the

convolution of the three wrapped normal distributions which

is equal to

WN�D1�G1�D1�G2�D1�G3�; �H1 � �H2 � �H3�: �18�
(d) Equation (18) may in turn be approximated by the von

Mises distribution

M��p; �H;T� � Lÿ1 exp�T cos��p ÿ�H��; �19�
where

�H � �H1 � �H2 � �H3

and T is de®ned via the relationship

D1�T� � D1�G1�D1�G2�D1�G3�: �20�
(e) Even if (19) is a good approximation of

P��pjRp;Rd;EH�, we can combine it with the Cochran

contribution in (16). By considering the Cochran term as

statistically independent of (19) (indeed the ®rst depends on

the moduli Rpj, the second on the differences �isoj), we have

P��pjRp;Rd;EH� � Lÿ1 exp�G cos��p ÿ�p��; �21�
where

G � �T2 � C2 � 2CT cos �H�1=2

C � 2�Neq�ÿ1=2
p Rp1Rp2Rp3

tan �p � T sin �H=�T cos �H � C�:
�p is the most probable phase of �p and may vary in the

interval (0, 2�), G is its reliability parameter.

6. Experimental applications

The unexpected result contained in (12) and (15) (i.e. no term

of order N
ÿ1=2
H survives) suggests that the ®nal probability

distribution (21) should be strictly correlated with classical

SIR techniques. It is then mandatory to check this result via

experimental applications. We used two test structures:



(i) M-FABP (Zanotti et al., 1992), space group P212121, a =

35.9, b = 56.5, c = 72.7 AÊ , molecular formula C667N170O261S3,

one formula per asymmetric unit, data resolution of 2.14 AÊ for

the native and for the Hg derivative (7595 measured re¯ec-

tions), one Hg site in the asymmetric unit.

(ii) BPO (Hecht et al., 1994), space group P213, a = 126.5 AÊ ,

molecular formula C2744O1073N712, one formula per asym-

metric unit, data resolution 2.35 AÊ for the native (23956

measured re¯ections), 2.8 AÊ resolution for the Au derivative

(15741 measured re¯ections), two Au sites in the asymmetric

unit.

For M-FABP and BPO, the program MLPHARE (Colla-

borative Computational Project, Number 4, 1994) calculated,

for the acentric re¯ections, phasing power values equal to 1.14

and 1.10, respectively.

We ®rst used calculated data. We added some Au sites to

the `natural sites' of the BPO derivative to check how the

accuracy of (21) changes with the scattering power of the

heavy-atom structure. We show in Table 1 the average phase

errors for the 23955 re¯ections [as obtained after the appli-

cation of the tangent formula based on (21)] when two, four

and six Au sites are located; the corresponding phase errors

obtained via classical SIR techniques are also quoted.

To ®nd the accuracy limits of (21), we used again the

calculated data of BPO, with two Au sites in the `natural'

positions. To simulate errors into the heavy-atom structure

model, we used in (21) the calculated FH values after having

moved the two Au atoms by average shifts of 0.05, 0.2, 0.5 and

1 AÊ , respectively. The average phase errors for the 23955

re¯ections are shown in Table 2 and are compared with the

corresponding values obtained via classical SIR techniques.

The last step of our calculations is addressed to check the

relative ef®ciency of (2) and (21) by experimental data. We

®rst estimated the triplet phase invariants found among the

NLARGE re¯ections with the largest value of j�isoj
(NLARGE = 920 for M-FABP, NLARGE = 840 for BPO). In

Table 3, hj��j�i is the cumulative average phase error of the

triplets with G � TRS if (21) is used, with jAj � TRS if (2) is

used. Eqations (2) and (21) are tools for phase assignment and

extension through appropriate tangent formulas. To check if

(21) leads to better phase estimates (for single re¯ections)

than (2), we used both in the tangent procedure described by

Giacovazzo et al. (1996), aiming at phasing re¯ections up to

derivative resolution. The quality of the phases has been

monitored by calculating the correlation factor (CORR)

between the corresponding electron density � and the `correct'

map �mod (obtained via model phases, all the re¯ections up to

native resolution included):
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Table 1
BPO, calculated data.

Average phase errors for the 23 955 measured re¯ections obtained at the end
of the tangent process based on equation (21); two, four and six Au sites were
assumed. Corresponding errors obtained via classical SIR techniques are also
quoted.

Equation (21) SIR
Au sites hj��j�i hj��j�i
2 44 44
4 45 46
6 47 47

Table 2
BPO, calculated data.

These data were computed by locating two Au atoms in the natural sites. To
simulate errors in the heavy-atom model we have recalculated the FH's after
average atomic shifts hdi � 0:05; 0:5; 0:5; 1 AÊ .

Equation (21) SIR
hdi hj��j�i hj��j�i
0.05 45 45
0.2 48 48
0.5 57 57
1 74 74

Table 3
Cumulative average phase error hj��j�i for equations (2) and (21).

NTR is the number of triplets with jAj or G larger than the threshold value
TRS.

M-FABP

TRS NTR(2) hj��j�i�2� NTR(21) hj��j�i�21�

0.4 50.000 72 50.000 68
1.2 26.522 69 35.540 67
2.0 4.076 64 18.715 65
3.8 76 48 3.534 56
5.5 0 ± 754 50

BPO

TRS NTR(2) hj��j�i�2� NTR(21) hj��j�i�21�

0.4 50.000 72 50.000 55
0.8 41.862 71 17.100 55
1.2 9.804 64 4.493 54
1.6 2.327 56 847 51
2.0 41 43 7 38

Table 4
For each test structure and for each procedure, NREF is the number of
phased re¯ections, hj��j�i and h�j��j��wi are the average and the
weighted average error, respectively, CORR the correlation factor of the
corresponding electron-density map.

M-FABP

NREF hj��j�i h�j��j��wi CORR

MLPHARE 7.040 69 (57) 0.41
Equation (2) 7.121 70 (62) 0.41
Equation (21) 7.031 67 (61) 0.41

BPO

NREF hj��j�i h�j��j��wi CORR

MLPHARE 15.741 61 (49) 0.47
Equation (2) 15.722 63 (53) 0.44
Equation (21) 15.046 63 (51) 0.44



research papers

206 Giacovazzo et al. � Direct methods and isomorphous replacement Acta Cryst. (2002). A58, 201±207

CORR � �h��modi ÿ h�ih�modi�
� ��h�2i ÿ h�i2�1=2�h�2

modi ÿ h�modi2�1=2�ÿ1:

To have a reference standard, the phases were also determined

via the classical SIR techniques by using the program

MLPHARE (Collaborative Computational Project, Number

4, 1994)

The results are shown in Table 4. We note:

(a) Tables 1 and 2 show that the procedures phasing protein

re¯ections via triplets and via classical SIR techniques have

equivalent accuracy;

(b) the larger ef®ciency shown in Table 3 by (21) with

respect to (2) in phasing the triplet invariants found among the

NLARGE re¯ections is not con®rmed when the formula is

applied to all the measured re¯ections. Indeed, the ®nal

weighted average phase error in Table 4 is almost equal for the

two equations and for both the test structures.

(c) MLPHARE provides results equivalent to those

obtained via (2) and (21) for M-FABP, while it is slightly more

ef®cient for BPO. This is probably due to the maximum-

likelihood re®nement techniques used to re®ne heavy-atom

parameters [a rather naive least-squares techniques is used in

our procedure when (21) is used].

7. Conclusions

The study of the distributions P�Ep;Ed� and P�Ep;EdjEH�
leads in both the cases to von Mises distributions. The

concentration parameter of P�Ep;Ed� contains a term of order

N
ÿ1=2
H [see (2)], which establishes the correlation of the triplet

method with standard SIR techniques (Giacovazzo et al.,

1996). The concentration parameter of P�Ep;EdjEH� directly

and uniquely relies on the probability parameters of the SIR

technique. It may be concluded that the three methods are

practically equivalent, the triplet method having the advan-

tage of phasing re¯ections in complete automation, without

previous knowledge of the heavy-atom structure. The practical

suggestion coming from this paper is the following three-step

phasing procedure: (i) a ®rst batch of re¯ections (say the

NLARGE subset) is phased via (2); (ii) heavy-atom positions

are found via a differential Fourier synthesis and re®ned via

suitable least squares; (iii) the phasing process is extended to

smaller jEjs via SIR±MIR techniques in order to save

computing time and storage (the millions of triplet invariants

necessary to the entire phasing process are no longer calcu-

lated). This mixed procedure still offers the complete auto-

mation of the process (from experimental data to phased

protein re¯ections) and may be automatically connected with

phase-re®nement procedures like solvent ¯attening and/or

histogram matching.

APPENDIX A

The integral of the component of order �Neq�ÿ1=2
p in (9) may be

written as follows:

�2��ÿ3��1�2�3�ÿ1 exp

�
ÿ 1

2

P3

j�1

fE2
pj � �Edj ÿ �Epj � EHj��2=�2

j g
�

� �2
1�

2
2�

2
3 �Neq�ÿ1=2

p f�Ep1e1 ÿ �Ed1 ÿ EH1��
� �Ep2e2 ÿ �Ed2 ÿ EH2���Ep3e3 ÿ �Ed3 ÿ EH3��
� �Ep1e1 ÿ �Ed1 ÿ EH1���Ed2 ÿ �Ep2 � EH2��
� �Ep3e3 ÿ �Ed3 ÿ EH3�� � �Ep1e1 ÿ �Ed1 ÿ EH1��
� �Ep2e2 ÿ �Ed2 ÿ EH2���Ed3 ÿ �Ep3 � EH3��
� �Ed1 ÿ �Ep1 � EH1���Ep2e2 ÿ �Ed2 ÿ EH2��
� �Ep3e3 ÿ �Ed3 ÿ EH3�� � �Ed1 ÿ �Ep1 � EH1��
� �Ed2 ÿ �Ep2 � EH2���Ep3e3 ÿ �Ed3 ÿ EH3��
� �Ed1 ÿ �Ep1 � EH1���Ep2e2 ÿ �Ed2 ÿ EH2��
� �Ed3 ÿ �Ep3 � EH3�� � �Ep1e1 ÿ �Ed1 ÿ EH1��
� �Ed2 ÿ �Ep2 � EH2���Ed3 ÿ �Ep3 � EH3��
� �Ed1 ÿ �Ep1 � EH1���Ed2 ÿ �Ep2 � EH2��
� �Ed3 ÿ �Ep3 � EH3��g �22�

A long but trivial algebraic analysis shows that the linear part

of (22) reduces to �Neq�ÿ1=2
p Ep1Ep2Ep3.

We thank the referees for useful suggestions and discus-

sions.
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